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5. SIMULATION 
Monte Carlo simulation is an extension of deterministic modeling.1

The simulation process is conceptually quite simple. Key judgment 
variables in the conventional, deterministic business model are 
identified, often with sensitivity analysis. These are the variables that 
can cause large changes in the output value, either because input 
values range widely or because of the model's extreme sensitivity. 
Input variables in the model that can assume a range of values are 
called stochastic or random variables. The remaining are called fixed 
or deterministic variables. 

 
Simulation, like decision trees, allows judgments about risks and 
uncertainties to be incorporated explicitly into the analysis. Probability 
distributions represent these judgements in a convenient form. 
Unfortunately, mathematical operations with probability distributions 
are notoriously difficult. Simulation provides an elegant and simple 
way to solve forecasting models where some of the parameter inputs 
are expressed as probability distributions. 

The figure shows how a simulation analysis is structured: 

 

                                                 
1 Monte Carlo simulation is what I mean by “simulation.” However, not all 
simulation models are stochastic (e.g., the “black oil simulator” familiar to reservoir 
engineers). 
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In a simulation analysis, each random variable is represented by a 
probability distribution. During a simulation run, these probability 
distributions are “randomly” sampled to determine trial values for the 
variables. They are called random samples because a random number 
generator drives the sampling process for obtaining trial values. This is 
the key to the simulation process. Though picked “randomly,” the 
frequency distributions of sample values closely match the input 
probability distributions. 

How Sampling Works: 
Here’s how it works. We want a sample value for each random 
variable for each trial in the simulation run. On a particular trial, the 
input variable trial values are substituted into the cashflow model. PV 
and other desired outcome results are saved. After performing many 
such trials, we analyze the distributions of the outcome variables. 
Frequency histograms (bar graphs) approximate the probability 
density distributions. The mean (arithmetic average) of many trials is 
approximates the expected value; the more trials, the more accurate the 
approximation. This elegantly simple technique allows us to solve 
what would otherwise be very difficult or impossible integration 
problems for expected values. 

 In conventional Monte Carlo simulation, independent random 
variables are sampled with replacement. That is, each sampling is 
independent of the others. The figure on the next page illustrates how a 
sample is obtained from a probability distribution. 

A random number function generates a value between 0 and 1. 
Conveniently, 0–1 is the probability range on a cumulative probability 
curve. Enter the graph at a cumulative probability (on the y-axis) equal 
to the sampling random number. The intersection of a line drawn 
across to the cumulative probability curve provides the sample value 
(x-axis) for this trial. On the example shown on the graph, the random 
number was 0.711. This corresponds to a value of 21.6 for the random 
variable. The sampling process is repeated for the other random 
variables in the model. These sample values are used during one trial's 
calculation pass through the deterministic model. 

The sample 

mean x− 
approximates the 
true population 
mean (µ or EV). 

random 
sampling 
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The sampling-and-calculation process is repeated for many trials. The 
number of trials is sufficient when the resulting frequency distribution 
adequately defines the model's true solution probability distribution. 
Often, we are interested primarily in the expected value, and a few 
hundred trials are usually sufficient to assure reasonable convergence. 

LHS and other Techniques 
The standard error of the mean (σx-) statistic can be used to determined 
the confidence of the expected value estimate.2 This is a common basis 
for a stopping rule. When comparing alternatives, using the same seed 
value to start the random number generator will reduce the number of 
trials needed for adequate convergence.3

A variant of the sampling process described above is Latin Hypercube 
Sampling (LHS). This fancy-sounding technique is simply a hybrid 
between uniform sampling and conventional Monte Carlo sampling. 
LHS provides faster convergence and, thus, is a very useful time-saver. 
LHS works by sampling in two steps. The probability range (y-axis) is 
divided into equally probable sections, like layers of a cake. The first 
step is to select a section at random, and this is done sampling without 
replacement. In the second step, the model randomly determines a 
probability point within the segment. The sections are recycled after all 
have been used. LHS ensures that all segments along the probability 
curve are equally sampled. 

  

                                                 
2 The standard error σx– ≅ . With careful use of Latin hypercube sampling, the 
actual error is typically 1/3 the value indicated from this formula. 
3 Technically it is a pseudo-random number, since the calculation is a formula. 
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Simulation can be thought of as a way to perform many sensitivity 
analyses automatically. The technique offers additional powerful 
features: 

• It provides an easy way to solve real world problems that are too 
complex to solve mathematically. 

• The outputs are probability distributions showing the nature of the 
risks and uncertainties. 

• More variables can be modeled, and more completely, than is 
practical with decision tree analysis. 

Simulation and decision tree analysis provide a more accurate answer 
than obtained with a deterministic model. There is often a great error 
with a deterministic model's single-point result due to correlations and 
to unequal effects of favorable and unfavorable deviations. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This and the companion Important Concept Summaries are excerpted from Decision Analysis Collection, 
Copyright © 1999-2012  by  John R. Schuyler. All rights reserved. 

Permissions granted: When viewing this document at an authorized website you may print one copy for yourself 
and up to five copies for colleagues for non-commercial purposes only. You may save one copy for your personal 
use on a local computer. Making additional paper or electronic copies—including scanning—is not permitted.. 


	5. SIMULATION
	How Sampling Works:
	LHS and other Techniques


